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Abstract 

The Advanced Microwave Scanning 

Radiometer 2 (AMSR2) is part of the Global 

Change Observation Mission-Water 

(GCOM-W). AMSR2 has filled the gap in 

passive microwave observations left by the 

loss of the Advanced Microwave Scanning 

Radiometer–Earth Observing System 

(AMSR-E) after almost 10 years of 

observations. Both missions provide 

brightness temperature observations that are 

used to retrieve soil moisture estimates at the 

near surface. A merged AMSR-E and 

AMSR2 data product will help build a 

consistent long-term dataset; however, before 

this can be done, it is necessary to conduct a 

thorough validation and assessment of the 

AMSR2 soil moisture products. This study 

focuses on the validation of the AMSR2 soil 

moisture products by comparison with in situ 

reference data from a set of core validation 

sites around the world. A total of three soil 

moisture products that rely on different 

algorithms were evaluated; the Japan 

Aerospace Exploration Agency (JAXA) soil 

moisture algorithm, the Land Parameter 

Retrieval Model (LPRM), and the Single 

Channel Algorithm (SCA). JAXA, SCA and 

LPRM soil moisture estimates capture the 

overall climatological features. The spatial 

features of the three products have similar 

overall spatial structure. The JAXA soil 

moisture product shows a lower dynamic 

range in the retrieved soil moisture with a 

satisfactory performance matrix when 

compared to in situ observations 

(ubRMSE=0.059 m3/m3, Bias=-0.083 m3/m3, 

R=0.465). The SCA performs well over low 

and moderately vegetated areas 

(ubRMSE=0.053 m3/m3, Bias=-0.039 m3/m3, 

R=0.549). The LPRM product has a large 

dynamic range compared to in situ 

observations with a wet bias 

(ubRMSE=0.094 m3/m3, Bias=0.091 m3/m3, 

R=0.577). Some of the error is due to the 

difference in observation depth between the 

in situ sensors (5 cm) and satellite estimates 

(1 cm). Results indicate that overall the 

JAXA and SCA have the best performance 

based upon the metrics considered. 

 

Key Words: Soil moisture, passive 

microwave, validation, in situ networks 
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I. Introduction 

Soil moisture is a key variable in 

controlling the exchange of water and energy 

balance between the land surface and the 

atmosphere through evaporation and plant 

transpiration. As a result, soil moisture plays 

an important role in the development of 

weather patterns and the production of 

precipitation. Soil moisture observations 

have the potential to significantly improve 

the accuracy of short-term weather forecasts 

and reduce the uncertainty of long-term 

projections of how climate change might 

impact Earth’s water cycle. The value of soil 

moisture to these processes was recognized 

by its identification as an essential climate 

variable [1]. Beyond these applications 

involving projections and retrospectives, near 

real time soil moisture can play an important 

role in hydrologic and agricultural 

monitoring and assessment (i.e. floods and 

droughts). 

Providing soil moisture globally on a 

frequent and operational basis is challenging, 

especially in near real time. Satellite-based 

passive microwave remote sensing has 

proven to be a reliable approach. Several 

products and satellite missions have 

contributed to its implementation. Recent 

efforts such as the European Space Agency 

(ESA) Climate Change Initiative (CCI) have 

demonstrated that data from these missions 

can be integrated to form longer term records 

[2]. The scientific value of these extended 

records related to processes and climate 

change are illustrated by [3-5]. 

The Advanced Microwave Scanning 

Radiometer–Earth Observing System 

(AMSR-E) projects of the National 

Aeronautics and Space Administration 

(NASA) and the Japan Aerospace 

Exploration Agency (JAXA) were the first 

satellite programs to incorporate soil 

moisture as a standard product [6-7]. AMSR-

E based soil moisture products developed 

using different algorithm concepts have been 

evaluated and inter-compared in a number of 

studies, under a range of ground and climate 

conditions and using a variety of metrics [8-

13]. These evaluations have shown that there 

are significant differences between the 

AMSR-E products in terms of biases, 

sensitivities and temporal responses.  

AMSR-E operated for almost 10 years 

starting in June 2002 and stopping normal 

operations in October 2011. JAXA launched 

the Advanced Microwave Scanning 

Radiometer 2 (AMSR2) as part of the Global 

Change Observation Mission-Water 

(GCOM-W) as a follow-on to AMSR-E. 

AMSR2 began routine data production in 

July 2012, leaving a gap of several months. 

GCOM-W was placed in the A-train sun 

synchronous orbit with an equatorial 

ascending overpass time of 1:30 PM, the 

same as the Aqua platform that hosted 

AMSR-E. AMSR2 provides dual 

polarization brightness temperature at the 

same frequencies as AMSR-E: 6.9, 10.65, 

18.7, 23.8, 36.5, and 89 GHz. Moreover, it 

has an additional C-band channel (7.3 GHz) 

that was included for radio frequency 

interference mitigation, and an improved 

calibration system. AMSR2 also offers a 

small improvement in the inherent spatial 

resolution due to its larger reflector compared 

to its predecessor. The nominal footprint size 

at 10.65 GHz is 24 km x 42 km. 

Merging the time series of AMSR-E and 

AMSR2 will help build a consistent long-

term dataset for monitoring components of 

the Earth’s water cycle [14]. However, the 

instruments are not identical (as noted above) 

and before tackling the integration of AMSR-

E and AMSR2, it is necessary to conduct a 

thorough validation and assessment of the 

AMSR2 soil moisture products.  

As described in [15] there are a number of 

different methodologies that can be utilized 

in validating remotely sensed soil moisture 

products. These include comparisons with in 
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situ observations and satellite and model-

based products. Each of these has value in a 

comprehensive approach such as that 

recommended by the Committee on Earth 

Observing Satellites [16]. 

The focus of this investigation is on in situ 

comparisons and specifically data sets that 

provide reliable estimates of the soil moisture 

over the retrieval domain. This approach will 

contribute to understanding the factors that 

impact either good or poor algorithm 

performance for specific sites and conditions. 

The key issue in conducting soil moisture 

product validation is the disparity in spatial 

scales between satellite and in situ 

observations. Conventional measurements of 

soil moisture are made at a localized point, 

whereas satellite sensors provide an 

integrated area/volume value for a much 

larger spatial extent. In situ measurements are 

not available widely enough to construct 

global products, and do not up-scale easily to 

the large-scale satellite measurements. 

Several investigations have examined 

aspects of AMSR2 soil moisture product 

validation [17-20]. Some of these were 

preliminary and others involved the use of 

validation methodologies that either focused 

on product intercomparisons or utilized a 

single station or limited set of validation 

sites. 

For this investigation, a key element of the 

use of core soil moisture validation sites 

developed by the Soil Moisture Active 

Passive (SMAP) mission [15] is adapted. 

SMAP mission collaborated in the 

development and implementation of core 

validation sites, where there is replicate 

sampling within the satellite footprint/grid. 

This approach provides explicit information 

on each site and algorithm that can be used 

for assessment and improvement. Other 

methodologies such as triple colocation can 

be used in later studies to expand the analyses 

to higher level validation stages as described 

in [21].  

This paper will present first validation of 

three publically available AMSR2 soil 

moisture products using Core Validation 

Sites (CVS). It will exploit the efforts of the 

SMAP mission that led to the most robust set 

of sites yet employed for this purpose. 

Section 2 describes the three soil moisture 

products evaluated. Section 3 provides a 

description of the SMAP CVS process and 

Section 4 the analysis approach. Section 5 

presents the results and discussion. Section 6 

summarizes the AMSR2 soil moisture 

validation results. 

II. Soil Moisture Products and 

Algorithms 

Retrieval of soil moisture from brightness 

temperature (TB) observations is based on a 

well-known approximation to the radiative 

transfer equation, commonly known in the 

passive microwave soil moisture community 

as the tau-omega model [22]. A layer of 

vegetation over soil attenuates the emission 

of the soil and adds to the total radiative flux 

with its own emission. A model following 

this approach to describe the TB of a weakly 

scattering layer above a semi-infinite 

medium was developed by [22-23].  

The TB is dependent on the sensor 

features (frequency, polarization, viewing 

angle) and target variables (soil moisture, 

roughness, vegetation properties, and 

physical temperature of both the soil and 

vegetation). In order to attempt the estimation 

of soil moisture, assumptions and 

simplifications are made. These 

simplifications are incorporated into the 

retrieval algorithm. There is typically more 

than one path that can be followed and as a 

result several soil moisture algorithms have 

been implemented for AMSR2 (and AMSR-

E). This investigation focuses on three 

publically distributed soil moisture products 

that rely on different algorithms; the JAXA 

Soil Moisture Algorithm (JAXA), the Single 
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Channel Algorithm (SCA), and the Land 

Parameter Retrieval Model (LPRM). A brief 

description of each algorithm is provided 

below. Analysis was limited to those 

products provided (or will be) by an agency. 

There are other algorithms but the products 

are not widely available. All the algorithms 

use the same input TB data for the retrieval 

process (JAXA L1R TB Version 2). 

 JAXA algorithm uses a forward radiative 

transfer scheme to generate brightness 

temperatures for a range of parameter 

values (vegetation and soils) for multiple 

frequencies and polarizations. The 

simulations are done using a constant 

surface temperature of 293 K. Results 

from synthetic runs are used to create 

lookup tables for soil moisture that utilize 

the polarization ratio at 10.65 GHz and 

the normalized brightness temperature 

difference between the 36.5 and 10.65 

GHz horizontal channels [24-27]. The 

lookup tables in the current version of the 

JAXA algorithm are dependent on the 

fractional vegetation cover derived from 

MODIS data [25]. The data used here are 

the soil moisture products Version 2, 

Algorithm version 210 as distributed by 

JAXA. 

 Single Channel Algorithm (SCA) is based 

on the radiative transfer equation and 

uses a single radiometer channel along 

with ancillary data [28]. The foundation 

of this approach is well known and has 

been implemented with satellite 

observations from AMSR-E [8], 

Aquarius [29] and SMAP [30, 31]. Like 

all algorithms it has advantages and 

disadvantages. In the SCA version used 

here, the horizontally polarized TB 

observations are converted to emissivity 

using a surrogate for the physical 

temperature of the emitting layer (36.5 

GHz-V TB) [32].  The derived emissivity 

is corrected for vegetation and surface 

roughness to obtain the soil emissivity.  

The Fresnel equation is then used to 

determine the dielectric constant.  

Finally, a dielectric mixing model is used 

to obtain the soil moisture given 

knowledge of the soil texture.  

Analytically, SCA attempts to solve for 

one unknown variable (soil moisture) 

from one equation that relates the 

horizontally polarized TB to soil 

moisture. Vegetation information is 

provided by a climatological database of 

global NDVI and a table of parameters 

based on land cover and polarization. In 

response to deficiencies found with the 

standard product provided by NASA for 

AMSR-E [8], NASA has added the SCA 

to its product suite. 

 Land Parameter Retrieval Model 

(LPRM) is based on [33 and 34] and has 

been used with several multi-frequency 

satellites including AMSR-E and 

AMSR2.  LPRM attempts to solve for 

soil moisture and vegetation optical depth 

using the vertically and horizontally 

polarized TB observations.  However, it 

does so under the assumptions that (1) the 

soil and canopy temperatures are 

considered equal, and (2) vegetation 

transmissivity and the single-scattering 

albedo are the same for both H and V 

polarizations.  Ancillary information such 

as effective soil temperature, surface 

roughness, and vegetation single 

scattering albedo must be known a priori 

before the inversion process. As in the 

case of the SCA, LPRM uses the 36.5 

GHz-V data to estimate effective 

temperature [32]. There are several 

variants of the LPRM for AMSR2 that 

utilize different combinations of 

frequencies and retrievals. Here the 

product based on the 10.65/36.5 GHz 

data was used for consistency with the 

JAXA and SCA results. The LPRM soil 

moisture data was obtained from the 

GSFC DAAC 
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(https://hydro1.gesdisc.eosdis.nasa.gov/d

ata/WAOB/LPRM_AMSR2_SOILM2.0

01/). 

III. SMAP Approach to Soil 

Moisture Product Validation 

and Core Validation Sites 

The assessment approach used here builds 

from the SMAP Calibration/Validation 

(Cal/Val) program [34]. SMAP employs five 

methodologies that include in situ 

observations (core sites [20, 30] and sparse 

networks [36]), product intercomparisons 

(satellite [37] and model), and field 

experiments [38]. Of these the most 

informative, especially for algorithm 

improvement, are the core validation sites 

(CVS).  

In an attempt to ensure the geographic 

distribution and diversity of conditions of the 

CVS, SMAP partnered with investigators 

(Calibration/Validation Partners) around the 

globe. The CVS candidates were selected 

based on a minimum requirement of 

providing continuous soil moisture 

measurements at a 5 cm depth with 

replication within a SMAP grid cell of at least 

one of the SMAP spatial scales (36-km for 

the passive-based products). Prior to launch, 

the potential sites were assessed for the 

adequacy of their number of points, 

calibration, and the basis for up-scaling 

amongst other criteria. The CVS core site list 

was selected from the candidate list based on 

the criterion where confidence in the 

representativeness of a site at the product 

spatial scale was considered within the error 

limit of SMAP products (<0.04 m3/m3). More 

details on the sites and selection process can 

be found in [20] and [30]. 

SMAP radiometer-based soil moisture 

products are processed onto a standard 36-km 

fixed Earth grid. It was observed that the 

spatial distribution of the in situ points of 

many networks did not match-up well with 

the established grids. In order to fully exploit 

the available sampling at these sites, a special 

validation grid processor was developed that 

allows processing over any 36 km domain on 

the basis of a 3 km ancillary data grid. The 

optimal grid was identified for each CVS and 

an up-scaling function for the in situ network 

was established. This optimal grid was also 

used for the AMSR2 core site assessment. 

The geographic location of the CVS sites 

is shown in Figure 1. The list of CVS utilized 

in this investigation is the same as that 

employed by SMAP and is shown in Table 1. 

The general features, number of sites and up-

scaling approach are also listed in the table. 

The areal average NDVI range based on the 

MODIS climatology is also included in Table 

1. 

IV. Analysis Approach 

All satellite soil moisture data utilized in 

this analysis were footprint retrievals, as 

opposed to gridded products. For each CVS, 

the product unflagged footprints with 

boresight centers that fell within the CVS 

boundaries were arithmetically averaged to 

estimate the surface soil moisture of the 36-

km validation grid cell. The flags from the 

respective products were used for screening 

the individual footprints. This was performed 

for each available day from July 2, 2012 

(beginning of the mission) to June 30, 2016, 

to produce a four-year record for the 

ascending and descending passes 

(separately). The LPRM analysis was based 

on the X-band retrievals for consistency with 

SCA and JAXA products. 

For in situ soil moisture, all dates and 

times corresponding to a satellite product 

were extracted. The three products deal with 

winter conditions (frozen soil and snow) 

differently. To avoid additional error, data 

with in situ surface temperature values below 

4oC were excluded from the comparisons. 

https://hydro1.gesdisc.eosdis.nasa.gov/data/WAOB/LPRM_AMSR2_SOILM2.001/
https://hydro1.gesdisc.eosdis.nasa.gov/data/WAOB/LPRM_AMSR2_SOILM2.001/
https://hydro1.gesdisc.eosdis.nasa.gov/data/WAOB/LPRM_AMSR2_SOILM2.001/
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Moreover, Reynolds Creek watershed has 

significant topographic features with high 

elevations that are typically snow covered 

during the winter months, so data from only 

the summer months was used for the 

comparison analysis. 

The in situ sensors are located at 5 cm or 

over the top 5 cm. The observation depth of 

X-band frequencies is close to 1 cm. This 

difference in observation depth will introduce 

some error in the soil moisture assessment. 

The top layer is typically drier than the deeper 

soil layer. 

It should be noted that not all CVS were in 

operation from the beginning of the AMSR2 

observing period, as their in situ observations 

began closer to the beginning of the SMAP 

program. The starting year of the observing 

periods is listed in Table 1 for each CVS. 

Assessment of the algorithms was based 

on CVS comparisons using established 

metrics [39] and time series plots.  These 

metrics include the root mean squared error 

(RMSE), unbiased root mean square error 

(ubRMSE), bias, and correlation.  The RMSE 

is the measure of the differences between in 

situ observations and the estimates, ubRMSE 

captures time-random errors, bias captures 

the mean differences or offsets, and 

correlation captures phase compatibility 

between data series. Metrics were computed 

separately for each CVS. Average metrics 

were computed from the site results. 

V. Results and Discussion 

The following analyses were conducted; 

assessment of the descending pass products, 

comparison of descending and ascending 

retrievals, AMSR2 versus AMSR-E, the 

impact of vegetation levels, and performance 

relative to SMAP. 

A. Comparison of Soil 

Moisture Products for 

Descending Passes 

The first analysis is based upon the 

descending overpass data (nominal observing 

local time of 1:30 AM) because it is expected 

that land surface temperature profile 

variations are smaller at this time than during 

the ascending passes. Figure 2 shows the soil 

moisture time series of in situ observations 

and AMSR2 soil moisture estimates over 

Little Washita watershed (representative 

example) for July 2012-June 2016. Little 

Washita is a semi-arid watershed with mostly 

rangeland and winter wheat crops that has 

been widely studied and used as a validation 

site for AMSR-E soil moisture validation [8]. 

The soil moisture dynamic range of the SCA 

retrievals is closest to the dynamic range of 

in situ retrievals. The JAXA retrievals have a 

lower dynamic range. LPRM retrievals 

exhibit a large dynamic range as compared to 

in situ observations. Some of the LPRM 

retrievals have large anomalous soil moisture 

values, which are greater than the soil 

porosity. Figure 3 shows the scatter plot of in 

situ observations as compared to AMSR2 

satellite estimates. SCA and JAXA retrievals 

have a slope less than the 1, whereas the 

LPRM retrievals show a positive slope with a 

high gain as compared to in situ observations. 

Table 2 summarizes the results for each CVS 

site, metric, and product. The best 

performance metric for each site among the 

different algorithms is highlighted in grey. 

Based on the best performance it can be 

observed that SCA had the best overall 

ubRMSE and bias performances. The LPRM 

had the highest correlation with in situ 

observations for most of the CVS locations. 

Focusing on the average results in the last 

row of the table, it is noted that the JAXA and 

SCA had similar values of the ubRMSE, the 

SCA ubRMSE was slightly better than that of 

the JAXA product and its bias was smaller 
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than JAXA. The LPRM had the highest 

values of the ubRMSE and bias, but had the 

highest correlation, being slightly better than 

the SCA. The key result is that both the 

JAXA and SCA ubRMSE met the target 

accuracy of 0.06 m3/m3. 

Individual CVS sites exhibit a range of 

performance; some such as Walnut Gulch are 

very good and others such as Carman are 

poor.  It is expected that some of the error at 

a site is associated with the level of 

vegetation, which will be discussed in a later 

section. 

B. Comparison of 

Descending and Ascending 

Products  

It was expected that the descending 

retrievals (1:30AM) would be more reliable 

than the ascending (1:30PM) because the 

effects of variations in both the spatial and 

profile variability of land surface temperature 

are smaller. Table 3 shows the ascending 

results for each site and the last two lines 

summarize the overall results for descending 

and ascending. 

The key result from Table 3 is that the 

differences between descending and 

ascending ubRMSE were small for all 

products. The JAXA and SCA products had 

similar bias and R values for descending and 

ascending. These results suggest that 

retrievals from both passes can be used with 

equal confidence, which means more 

frequent coverage of any location. Figure 4 

shows the bar chart of ubRMSE performance 

for ascending and descending orbits. The 

difference in ubRMSE for the AM and PM 

retrievals was very small for all the retrieval 

options. The SCA retrievals for both 

ascending and descending orbits 

outperformed the other algorithm options. 

An unexpected result is that the LPRM 

had a large reduction in the overestimation 

bias from the descending retrievals. 

However, this did not impact ubRMSE. It is 

hypothesized that this result was associated 

with the land surface temperature and 

vegetation correction approach used by the 

LPRM. 

C. Comparison of AMSR2 

to AMSR-E Validation Results 

During the AMSR-E era, a validation 

study was conducted using four of the sites in 

the US listed in Table 1; Little Washita, 

Walnut Gulch, Little River, and Reynolds 

Creek [8]. That study covered a seven year 

period (2002-2009) and included the three 

soil moisture products considered in this 

investigation. The validation domains were 

not exactly the same as the validation grids 

used here, but it is not expected to have a 

significant effect. In this section the 

performance of the algorithms using just the 

subset of four sites is assessed and compared 

to the AMSR-E metrics. The summary 

statistics for AMSR2 using the 15 sites are 

repeated in Table 4 along with the results 

obtained using only the four sites for 

comparison. Since these sites have lower 

vegetation densities, it is not surprising that 

the ubRMSE improved for all products and 

the bias decreased for the JAXA and SCA 

products. 

The last row of Table 4 shows the results 

from [8]. The SCA and LPRM results 

degraded somewhat between the AMSR-E to 

AMSR2. Some of this change could be 

associated with the difference in the length of 

the period of observation. 

A major difference is noted in the JAXA 

product comparison. Here there is a reversal 

in the bias from overestimation for AMSR-E 

to underestimation for AMSR2. This change 

is associated with major changes in the JAXA 

algorithm between the assessment in 2010 [8] 

and the current version.  
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D. Effect of Vegetation 

Level 

It is well known that higher amounts of 

vegetation, often characterized by the 

vegetation water content, attenuate the 

sensitivity of brightness temperature to 

changes in soil moisture [40]. The effect of 

the vegetation is larger at higher frequencies. 

Several of the sites listed in Table 1 are 

dominated by agricultural crops and it is not 

expected that products based on AMSR2 data 

would perform well during the summer 

months. These included Carman, South Fork, 

Twente, Monte Buey, and Kenaston.  

In order to assess the impact of vegetation 

level, the metrics for the full set of sites were 

compared to a reduced set that omitted the 5 

sites noted above. Table 5 summarizes the 

results. As expected, all metrics for all 

products improved when the higher 

vegetation sites were filtered out. The 

ubRMSE for JAXA and SCA dropped below 

0.05 m3/m3. 

E. AMSR2 versus SMAP 

All of the CVS were used to assess the 

performance of SMAP. Therefore, it is 

possible to compare the SMAP and AMSR2 

metrics. There is a difference in the period of 

record available; SMAP is 1.25 years and 

AMSR2 is 4 years long. Before doing a direct 

comparison the potential impact of the 

specific and shorter period of record was 

assessed. Table 6 lists the AMSR2 results for 

the full record and the 1.25 year record.  

There was almost no effect on any metric or 

product. 

The last row of Table 6 presents the 

SMAP results and can be compared to the 

AMSR2 1.25 year metrics for the three 

products. As expected, compared to any of 

the AMSR2 products the SMAP results are 

much better. This is of course associated with 

the lower frequency (X vs. L-band). Most 

obvious changes are the high R and near zero 

bias for SMAP. L-band observations have an 

observation depth which is closer to the depth 

of the in situ sensors (centered at 5 cm).  

VI. Summary 

Although there have been a number of 

validation studies involving soil moisture 

products derived from AMSR2 (and AMSR-

E), the results are often not robust enough to 

reliably assess performance for specific site 

conditions. In most cases, a few selected sites 

or sparse networks were utilized, which 

cannot provide reliable information over a 

typical microwave radiometer footprint. 

Here, core validation sites were used to 

assess three AMSR2 soil moisture products. 

These sites include replicate spatial in situ 

sampling and scaling over the AMSR2 

footprint/grid cell, thus providing a more 

reliable estimate of the soil moisture that is 

used to assess the satellite products. 

Results based on the descending passes 

indicate that the JAXA and SCA products 

had a similar ubRMSE that met the target 

accuracy requirements for AMSR2 (JAXA 

soil moisture accuracy requirement is 0.10 

m3/m3 and a desired accuracy level of 0.06 

m3/m3). The SCA had a lower bias and 

slightly higher correlation. In general the 

LPRM had a high overestimation bias that 

resulted in a higher ubRMSE. LPRM soil 

moisture estimates tended to have a larger 

soil moisture dynamic range than the in situ 

observations. The ascending results were 

similar to descending, suggesting that both 

passes can be utilized, thus offering more 

frequent coverage. 

The in situ observations were made with 

sensors located at 5 cm or over the top 5 cm. 

This is deeper than the observation depth 

expected for AMSR2 X-band observations. 

Some of the observed differences are likely 

due to differences in sensing depths: AMSR2 

measures shallower soil moisture than in situ 

probes. The top 1 cm soil layer is typically 
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drier than the deeper soil layers, which would 

result in a dry bias and a smaller dynamic 

range for the AMSR2 estimates. 

The limitations of using higher microwave 

frequencies on soil moisture retrieval 

accuracy were assessed by separating the 

core validation sites into low and high 

vegetation optical depth categories. 

Performance improved when only low 

vegetation sites were considered. Moreover, 

the advantages of using a lower frequency 

were demonstrated by using SMAP retrievals 

at these same core validation sites.  
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Table 1. Core Validation Sites characteristics used for AMSR2 validation. 

Site Name Region 
Climate 

Regime 
Land Cover 

MODIS 

Climatology 

NDVI 

Range 

Number 

of 

Stations 

Up-scaling 

Approach 

Start 

Year 

Walnut Gulch 
USA 

(Arizona) 
Arid Shrub open 0.18-0.37 29 

Voronoi 

diagram 
2012 

Reynolds 

Creek 

USA 

(Idaho) 
Arid Grasslands 0.27-0.42 20 

Voronoi 

diagram 
2012 

TxSON 
USA 

(Texas) 
Temperate Grasslands 0.40-0.59 36 

Voronoi 

diagram 
2015 

Fort Cobb 
USA 

(Oklahoma) 
Temperate Grasslands 0.37-0.55 15 

Voronoi 

diagram 
2012 

Little Washita 
USA 

(Oklahoma) 
Temperate Grasslands 0.32-0.60 20 

Voronoi 

diagram 
2012 

South Fork USA (Iowa) Cold Croplands 0.23-0.87 20 
Voronoi 

diagram 
2012 

Little River 
USA 

(Georgia) 
Temperate 

Cropland/natural 

mosaic 
0.48-0.74 28 

Voronoi 

diagram 
2012 

Kenaston Canada Cold Croplands 0.22-0.64 28 
Voronoi 

diagram 
2012 

Carman Canada Cold Croplands 0.23-0.76 9 

Soil type 

and land 

cover 

2012 

Monte Buey Argentina Arid Croplands 0.31-0.83 14 
Voronoi 

diagram 
2015 

REMEDHUS Spain Temperate Croplands 0.25-0.49 19 
Voronoi 

diagram 
2012 

Twente 
The 

Netherlands 
Temperate 

Cropland/natural 

mosaic 
0.58-0.82 5 

Model-

based 
2015 

Mongolian 

grasslands 
Mongolia Cold Grasslands 0.11-0.21 7 

Arithmetic 

average 
2012 

Yanco Australia Semi-Arid Croplands/Grasslands 0.26-0.59 28 
Voronoi 

diagram 
2012 

Kyeamba Australia Temperate Croplands 0.40-0.71 5 
Arithmetic 

average 
2012 
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Table 2. AMSR 2 Descending (1:30 AM) performance statistics for the three soil moisture products, Japanese Space Agency (JAXA), 

Single Channel Algorithm (SCA), and Land Parameter Retrieval Model (LPRM). AMSR2 retrievals with the best performance for 

each site are highlighted in grey. 

 JAXA SCA LPRM 

Location  ubRMSE 

(m3/m3) 

Bias 

(m3/m3) 

RMSE 

(m3/m3) 
R N 

ubRMSE 

(m3/m3) 

Bias 

(m3/m3) 

RMSE 

(m3/m3) 
R N 

ubRMSE 

(m3/m3) 

Bias 

(m3/m3) 

RMSE 

(m3/m3) 
R N 

REMEDHUS  0.041 -0.055 0.069 0.715 685 0.034 -0.034 0.048 0.804 653 0.097 0.132 0.163 0.786 577 

Reynolds Creek  0.058 -0.076 0.096 0.293 585 0.057 -0.071 0.091 0.351 580 0.090 0.041 0.099 0.587 467 

Yanco  0.054 -0.055 0.077 0.601 944 0.058 0.021 0.062 0.614 938 0.072 0.071 0.101 0.726 943 

Kyeamba  0.072 -0.089 0.114 0.527 540 0.058 -0.047 0.075 0.718 522 0.084 0.097 0.128 0.707 481 

Carman  0.086 -0.147 0.170 0.452 898 0.096 -0.107 0.144 0.333 598 0.148 0.126 0.194 0.130 682 

Twente  0.097 -0.127 0.160 0.455 434 0.058 -0.073 0.093 0.554 437 0.064 0.141 0.154 0.763 442 

Walnut Gulch  0.026 -0.020 0.033 0.722 903 0.032 -0.011 0.034 0.458 888 0.051 0.079 0.094 0.717 834 

Little Washita  0.049 -0.084 0.097 0.433 929 0.044 -0.053 0.069 0.592 918 0.089 0.093 0.129 0.655 959 

Fort Cobb  0.046 -0.084 0.096 0.532 857 0.045 -0.037 0.059 0.611 865 0.078 0.073 0.107 0.622 897 

Little River  0.064 0.008 0.064 0.433 946 0.029 0.016 0.033 0.711 944 0.084 0.195 0.212 0.572 964 

South Fork 0.079 -0.155 0.174 0.493 579 0.094 -0.074 0.120 0.498 542 0.109 0.096 0.145 0.530 585 

Monte Buey  0.064 -0.181 0.192 0.414 799 0.065 -0.085 0.107 0.625 791 0.076 0.064 0.099 0.658 821 

Kenaston  0.055 -0.122 0.134 0.488 1055 0.056 -0.071 0.091 0.479 728 0.100 0.191 0.216 0.466 934 

TxSON  0.054 -0.136 0.147 0.385 277 0.043 -0.108 0.116 0.722 276 0.125 0.091 0.154 0.503 292 

Mongolia 0.038 -0.009 0.039 0.586 1257 0.060 0.024 0.064 0.470 573 0.058 0.016 0.060 0.596 628 

 JAXA SCA LPRM 

Average 

AMSR2  

0.059 -0.089 0.111 0.502  0.055 -0.047 0.080 0.569  0.088 0.100 0.137 0.601  
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Table 3. AMSR2 Ascending (1:30 PM) performance statistics for the three soil moisture products, Japanese Space Agency (JAXA), 

Single Channel Algorithm (SCA), and Land Parameter Retrieval Model (LPRM). AMSR2 retrievals with the best performance for 

each site are highlighted in grey. 

 JAXA SCA LPRM 

Location  ubRMSE 

(m3/m3) 

Bias 

(m3/m3) 

RMSE 

(m3/m3) 
R N 

ubRMSE 

(m3/m3) 

Bias 

(m3/m3) 

RMSE 

(m3/m3) 
R N 

ubRMSE 

(m3/m3) 

Bias 

(m3/m3) 

RMSE 

(m3/m3) 
R N 

REMEDHUS  0.040 -0.056 0.068 0.683 764 0.041 -0.040 0.057 0.764 739 0.097 0.082 0.127 0.759 588 

Reynolds Creek  0.060 -0.081 0.101 0.303 640 0.064 -0.078 0.100 0.199 628 0.073 0.008 0.073 0.585 631 

Yanco  0.049 -0.038 0.062 0.707 942 0.060 0.024 0.064 0.716 942 0.052 0.027 0.059 0.788 944 

Kyeamba  0.069 -0.071 0.099 0.562 527 0.060 -0.042 0.073 0.714 529 0.074 0.041 0.084 0.780 502 

Carman  0.079 -0.148 0.168 0.454 945 0.092 -0.113 0.146 0.233 681 0.132 0.027 0.134 -0.025 757 

Twente  0.088 -0.138 0.163 0.481 458 0.051 -0.090 0.103 0.710 461 0.091 0.057 0.108 0.811 455 

Walnut Gulch  0.027 -0.021 0.034 0.541 985 0.038 -0.016 0.041 0.217 964 0.052 0.054 0.074 0.341 973 

Little Washita  0.056 -0.059 0.082 0.486 968 0.043 -0.045 0.062 0.647 970 0.101 0.060 0.117 0.557 993 

Fort Cobb  0.043 -0.076 0.087 0.629 944 0.045 -0.039 0.060 0.660 939 0.082 0.028 0.087 0.574 971 

Little River  0.046 -0.004 0.046 0.554 923 0.032 0.006 0.033 0.707 921 0.100 0.100 0.142 0.588 943 

South Fork 0.078 -0.163 0.181 0.502 600 0.087 -0.094 0.128 0.572 580 0.142 0.011 0.143 0.402 533 

Monte Buey  0.072 -0.133 0.152 0.541 825 0.079 -0.042 0.090 0.647 823 0.084 0.019 0.086 0.542 832 

Kenaston  0.054 -0.103 0.117 0.599 1083 0.053 -0.060 0.080 0.636 837 0.082 0.096 0.126 0.350 1019 

TxSON  0.055 -0.122 0.134 0.542 294 0.041 -0.103 0.111 0.784 293 0.118 0.042 0.125 0.495 276 

Mongolia 0.039 0.005 0.040 0.528 1269 0.058 0.033 0.067 0.577 862 0.074 0.031 0.080 0.555 911 

 JAXA SCA LPRM 

Avg. Asc. 0.057 -0.081 0.102 0.541  0.056 -0.046 0.081 0.586  0.090 0.045 0.104 0.540  
Avg. Des.  0.059 -0.089 0.111 0.502  0.055 -0.047 0.080 0.569  0.088 0.100 0.137 0.601  
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Table 4. AMSR2 and AMSR-E descending orbit (1:30 AM) summary performance statistics for the three soil moisture products, 

Japanese Space Agency (JAXA), Single Channel Algorithm (SCA), and Land Parameter Retrieval Model (LPRM). AMSR2 retrievals 

with the best performance for each site are highlighted in grey. 

 JAXA SCA LPRM 

 ubRMSE 

(m3/m3) 

Bias 

(m3/m3) 

RMSE 

(m3/m3) 
R 

ubRMSE 

(m3/m3) 

Bias 

(m3/m3) 

RMSE 

(m3/m3) 
R 

ubRMSE 

(m3/m3) 

Bias 

(m3/m3) 

RMSE 

(m3/m3) 
R 

Avg. AMSR2 All 0.059 -0.089 0.111 0.502 0.055 -0.047 0.080 0.569 0.088 0.100 0.137 0.601 

Avg. AMSR2 4  0.049 -0.043 0.072 0.470 

  
0.040 -0.030 0.057 0.528 

  
0.078 0.102 0.133 0.633 

Avg. AMSR-E 4  0.057 0.042 0.071 0.329 

  
0.032 -0.001 0.037 0.518 

  
0.073 0.139 0.158 0.616 

  Avg. AMSR2 All – Average performance of the AMSR2 retrievals over all the CVS sites 

Avg. AMSR2 4 – Average performance of the AMSR2 retrievals over Little Washita, Little River, Walnut Gulch and Reynolds Creek watersheds. These CVS 

sites were used in the AMSR-E assessment [8]. 

Avg. AMSR-E All – Average performance of the AMSR2 retrievals over Little Washita, Little River, Walnut Gulch and Reynolds Creek watersheds. 
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Table 5. Vegetation Level Effects on descending orbit performance statistics for the three soil moisture products, Japanese Space 

Agency (JAXA), Single Channel Algorithm (SCA), and Land Parameter Retrieval Model (LPRM). AMSR2 retrievals with the best 

performance for each site are highlighted in grey. 

 JAXA SCA LPRM 

 ubRMSE 

(m3/m3) 

Bias 

(m3/m3) 

RMSE 

(m3/m3) 
R 

ubRMSE 

(m3/m3) 

Bias 

(m3/m3) 

RMSE 

(m3/m3) 
R 

ubRMSE 

(m3/m3) 

Bias 

(m3/m3) 

RMSE 

(m3/m3) 
R 

Avg. AMSR2 All 0.059 -0.089 0.111 0.502 0.055 -0.047 0.080 0.569 0.088 0.100 0.137 0.601 

Avg. AMSR2  9  0.049 -0.068 0.085 0.533 
  

0.048 -0.035 0.069 0.593 
  

0.083 0.077 0.115 0.655 

Avg. AMSR2 All – Average performance of the AMSR2 retrievals over all the CVS sites 

Avg. AMSR2 9 – Average performance of the AMSR2 retrievals over sites with low to moderate vegetation. 
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Table 6. AMSR2 versus SMAP performance statistics for the three soil moisture products, Japanese Space Agency (JAXA), Single 

Channel Algorithm (SCA), and Land Parameter Retrieval Model (LPRM). 

 JAXA SCA LPRM 

 ubRMSE 

(m3/m3) 

Bias 

(m3/m3) 

RMSE 

(m3/m3) 
R 

ubRMSE 

(m3/m3) 

Bias 

(m3/m3) 

RMSE 

(m3/m3) 
R 

ubRMSE 

(m3/m3) 

Bias 

(m3/m3) 

RMSE 

(m3/m3) 
R 

Avg. AMSR2 All 0.059 -0.089 0.111 0.502 0.055 -0.047 0.080 0.569 0.088 0.100 0.137 0.601 

SMAP - - - - 0.039 -0.007 0.055 0.820 - - - - 

Avg. AMSR2 All – Average performance of the AMSR2 retrievals over all the CVS sites for 1.25 years (April 2015-June 2016). 

SMAP – Average performance of the SMAP retrievals over all the CVS sites for 1.25 years (April 2015-June 2016). 
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Figure 1: Location of Validation sites marked with red circles used in the AMSR2 soil moisture assessment. 

  



22 
 

 

 

 

Figure 2. Time series of in situ observations and AMSR2 soil moisture retrievals for descending orbits over Little Washita 

watershed for July 2012-June 2016. 
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Figure 3. Scatter plot of in situ observations compared to AMSR2 soil moisture estimates for descending orbits over Little 

Washita watershed for July 2012-June 2016. 
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Figure 4. ubRMSE performance of AMSR2 soil moisture for ascending and descending orbits. 
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